Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

An open-framework borophosphate, $\mathrm{LiCu}_{2} \mathbf{B P}_{2} \mathrm{O}_{\mathbf{8}}(\mathrm{OH})_{2}$

Juan Zheng and Aiyun Zhang*

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
Correspondence e-mail: zay@hpu.edu.cn
Received 15 April 2009; accepted 26 April 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{B})=0.002 \AA$; R factor $=0.019 ; w R$ factor $=0.054 ;$ data-to-parameter ratio $=11.7$.

The open-framework alkaline-earth metal borophosphate, lithium dicopper(II) borophosphate dihydroxide, $\mathrm{LiCu}_{2} \mathrm{~B}$ $\mathrm{P}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2}$, was synthesized hydrothermally. Its structure may be regarded as a layer formed via BO_{4} and PO_{4} tetrahedra bonding together with distorted CuO_{6} and LiO_{6} octahedral units. Each P atom is connected to B, Li and Cu atoms through a bridging O atom. The B atom lies on a crystallographic twofold axis and the Li atom lies on a center of symmetry. The two metal centers are connected to each other by $\mathrm{Cu}-\mathrm{O}-\mathrm{Li}$ bonds.

Related literature

For chiral structures and potential applications in catalysis of borophosphates with the general formula $A M\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}$ $\left[\mathrm{BP}_{2} \mathrm{O}_{8}\right] \cdot y \mathrm{H}_{2} \mathrm{O}\left(A=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{NH}_{4}{ }^{+} ; M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}\right.$, $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd})(y=0.5-1)$, see: Ewald et al. (2007); Kniep et al. (1997). For related structures, see: Boy \& Kniep (2001); Yang et al. (2008).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{LiCu}_{2} \mathrm{BP}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2} \\
& M_{r}=368.79 \\
& \text { Monoclinic, } C 2 / c \\
& a=15.0974(19) \AA \\
& b=4.7617(6) \AA
\end{aligned}
$$

$$
\begin{aligned}
& c=9.6585(12) \AA \\
& \beta=91.0190(10)^{\circ} \\
& V=694.23(15) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$$
\begin{aligned}
\mu & =6.64 \mathrm{~mm}^{-1} \\
T & =296 \mathrm{~K}
\end{aligned}
$$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.350, T_{\text {max }}=0.398$
(expected range $=0.285-0.324)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad \mathrm{H}$ atoms treated by a mixture of
$\begin{array}{ll}w R\left(F^{2}\right)=0.054 & \text { independent and constrained } \\ S=1.18 & \text { refinement }\end{array}$
$S=1.18$
925 reflections
79 parameters
1 restraint
$0.20 \times 0.18 \times 0.17 \mathrm{~mm}$

4076 measured reflections 925 independent reflections 897 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$
refinement
$\Delta \rho_{\max }=0.63 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.53 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$0.848(10)$	$2.37(3)$	$2.9535(19)$	$126(3)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots 5^{\mathrm{ii}}$	$0.848(10)$	$2.32(2)$	$3.036(2)$	$143(3)$

Symmetry codes: (i) $x,-y+2, z+\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Main Teacher Project of Henan Province (Reference 649082) and the Foundation of Graduate Produce (Reference 2008-M-17).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2104).

References

Boy, I. \& Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9-10.
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Ewald, B., Huang, Y.-X. \& Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 15171540.

Kniep, R., Will, H. G., Boy, I. \& Röhr, C. (1997). Angew. Chem. Int. Ed. 36, 1013-1014.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yang, T., Sun, J.-L., Li, G.-B., Eriksson, L., Zou, X.-D., Liao, F.-H. \& Ling, J.-H. (2008). Chem. Eur. J. 14, 7212-7217.

supplementary materials

Acta Cryst. (2009). E65, i40 [doi:10.1107/S1600536809015554]

An open-framework borophosphate, $\mathrm{LiCu}_{2} \mathrm{BP}_{\mathbf{2}} \mathrm{O}_{\mathbf{8}}(\mathbf{O H})_{2}$

J. Zheng and A. Zhang

Comment

In the last decade, much attention has been paid to the large family of borophosphates with the general formula $A M\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left[\mathrm{BP}_{2} \mathrm{O}_{8}\right] \cdot \mathrm{yH}_{2} \mathrm{O}\left(\mathrm{A}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{NH}^{+} ; M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}\right)(y=0.5-1)$ due to their chiral structure property and potential applications for catalysts (Kniep et al., 1997; Ewald et al., 2007).

The crystal structure of $\mathrm{LiCu}_{2} \mathrm{BP}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2}$ contains one unique Li atom, two Cu atoms, one boron atom, two phosphor atoms, and eight oxygen atoms and two - OH groups in the asymmetric unit of the framework. The borophosphate units are isolated anions linked by the bonds them form to Cu, Li and H . (Fig.1) Each BO_{4} tetrahedron belongs to the adjacent CuO_{6} octahedra. The phosphorous atoms are allocated in regular tetrahedral environments with four types of oxygen atoms. Bond lengths and angles within the anionic partial structure are consistent with related borophosphates (Boy et al., 2001; Yang et al. 2008),. Li^{+}is coordinated by the oxygen functions groups of PO_{4} groups. Cu^{2+} is adjacent to six oxygen atoms, five from PO_{4} groups and one BO_{4} groups, but one of the five PO_{4} links (O3) is also bonded to BO_{4} (Fig.2)

Experimental

Blue block crystals were synthesized hydrothermally from a mixture of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$, water and $\mathrm{H}_{3} \mathrm{PO}_{4}$. In a typical synthesis, $0.725 \mathrm{~g} \mathrm{Cu}_{\left(\mathrm{NO}_{3}\right)_{2}}$ were dissolved in a mixture of 5 mL water, $1.691 \mathrm{~g} \mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ and $2 \mathrm{ml}(85 \%) \mathrm{H}_{3} \mathrm{PO}_{4}$ with constant stirring. Finally, the mixture was kept in a 30 ml Teflon-lined steel autoclave at 443 K for 6days. The autoclave was slowly cooled to room temperature. Blue block crystals of thetitle compound were obtained.

Refinement

The H atoms of the coordinated water molecule were refined with $\operatorname{Uiso}(\mathrm{H})=2.4 \mathrm{Ueq}(\mathrm{O})$ and distance restraints $\mathrm{d}(\mathrm{O}-\mathrm{H}) \mathrm{of}$ 0.86 (1) \AA. The highest peak in the difference map is $0.63 \mathrm{e} / \AA$, and $0.77 \AA$ from O 2 , and the minimum peak is $-0.53 \mathrm{e} / \AA$, and $0.70 \AA$ from Cu1.

Figures

Fig. 1. The structure of $\mathrm{LiCu}_{2} \mathrm{BP}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2}$. Displacement ellipsoids are drawn at 50% the probability level.

supplementary materials

Fig. 2. Packing diagram of $\mathrm{LiCu}_{2} \mathrm{BP}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2}$, viewed along b axis.

lithium dicopper borophosphate dihydroxide

Crystal data

$\mathrm{LiCu}_{2} \mathrm{BP}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2}$
$M_{r}=368.79$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=15.0974$ (19) \AA
$b=4.7617$ (6) \AA
$c=9.6585(12) \AA$
$\beta=91.0190(10)^{\circ}$
$V=694.23(15) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=712 \\
& D_{\mathrm{x}}=3.528 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3236 \text { reflections } \\
& \theta=2.7-29.3^{\circ} \\
& \mu=6.64 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.20 \times 0.18 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.350, T_{\text {max }}=0.398$
4076 measured reflections
925 independent reflections
897 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=29.3^{\circ}$
$\theta_{\min }=2.7^{\circ}$
$h=-20 \rightarrow 20$
$k=-6 \rightarrow 6$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.054$
$S=1.18$
925 reflections

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0258 P)^{2}+1.3109 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.63$ e \AA^{-3}

79 parameters

1 restraint
$\Delta \rho_{\min }=-0.52 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0350 (13)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	$0.350210(15)$	$1.20604(5)$	$0.77155(2)$	$0.00731(13)$
P2	$0.35630(3)$	$0.67849(9)$	$0.58833(5)$	$0.00503(14)$
O3	$0.44649(9)$	$0.5916(3)$	$0.65917(14)$	$0.0085(3)$
O2	$0.34451(9)$	$0.9972(3)$	$0.59584(13)$	$0.0080(3)$
O1	$0.28531(9)$	$0.5146(3)$	$0.66790(13)$	$0.0074(3)$
O5	$0.35401(9)$	$0.5717(3)$	$0.44007(13)$	$0.0085(3)$
O4	$0.44543(9)$	$0.9550(3)$	$0.83773(13)$	$0.0101(3)$
B	0.5000	$0.7756(6)$	0.7500	$0.0069(5)$
Li	0.2500	1.2500	0.5000	$0.0201(11)$
H4	$0.425(2)$	$0.852(6)$	$0.901(2)$	0.024^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.01075(17)$	$0.00604(17)$	$0.00510(16)$	$0.00214(8)$	$-0.00107(9)$	$-0.00075(7)$
P 2	$0.0066(2)$	$0.0042(2)$	$0.0042(2)$	$-0.00019(15)$	$-0.00068(16)$	$0.00003(15)$
O 3	$0.0084(6)$	$0.0069(6)$	$0.0100(6)$	$0.0005(5)$	$-0.0034(5)$	$-0.0008(5)$
O 2	$0.0118(6)$	$0.0048(6)$	$0.0072(6)$	$0.0011(5)$	$-0.0018(5)$	$-0.0006(5)$
O 1	$0.0082(6)$	$0.0068(6)$	$0.0073(6)$	$0.0005(5)$	$0.0014(4)$	$0.0022(5)$
O 5	$0.0130(7)$	$0.0076(6)$	$0.0049(6)$	$0.0003(5)$	$-0.0001(5)$	$-0.0001(5)$
O4	$0.0119(6)$	$0.0116(7)$	$0.0067(6)$	$0.0041(5)$	$0.0004(5)$	$0.0000(5)$
B	$0.0079(13)$	$0.0056(12)$	$0.0073(13)$	0.000	$-0.0006(10)$	0.000
Li	$0.021(3)$	$0.017(2)$	$0.022(3)$	$0.006(2)$	$-0.012(2)$	$-0.006(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{O} 5^{\mathrm{i}}$
1.9415 (13)

P2-O1
1.5420 (14)

Cu1-O2	1.9674 (14)	$\mathrm{P} 2-\mathrm{O} 3$	1.5686 (14)
$\mathrm{Cu}-\mathrm{O} 4$	1.9676 (14)	$\mathrm{B}-\mathrm{O} 4^{\mathrm{iv}}$	1.467 (2)
$\mathrm{Cu} 1-\mathrm{O} 1^{\text {ii }}$	2.0213 (13)	$\mathrm{B}-\mathrm{O} 3^{\mathrm{iv}}$	1.471 (2)
$\mathrm{Cu} 1-\mathrm{O}{ }^{1 i i}$	2.3242 (13)	$\mathrm{Li}-\mathrm{O}^{\text {v }}$	2.0723 (14)
P2-O5	1.5195 (13)	$\mathrm{Li}-\mathrm{O} 1^{\text {ii }}$	2.1143 (13)
P2-O2	1.5300 (15)	$\mathrm{Li}-\mathrm{O} 5^{\mathrm{ii}}$	2.2758 (14)
$\mathrm{O} 5-\mathrm{Cu}-\mathrm{O} 2$	177.21 (6)	$\mathrm{P} 2-\mathrm{O} 5-\mathrm{Cu} 1^{\text {viii }}$	127.40 (8)
O5 ${ }^{\text {i }}$ - $\mathrm{Cu}-\mathrm{O} 4$	92.77 (6)	$\mathrm{P} 2-\mathrm{O} 5-\mathrm{Li}^{\text {vi }}$	89.42 (6)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 4$	89.64 (6)	$\mathrm{Cu1}{ }^{\text {viii }}$-O5-Li ${ }^{\text {vi }}$	124.75 (6)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{ii}}$	91.48 (6)	$\mathrm{B}-\mathrm{O} 4-\mathrm{Cu} 1$	125.51 (9)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 1^{\text {ii }}$	85.80 (6)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{B}-\mathrm{O} 4$	108.8 (2)
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O} 1^{\text {ii }}$	161.34 (6)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{B}-\mathrm{O} 3$	108.09 (7)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	90.91 (5)	$\mathrm{O} 4-\mathrm{B}-\mathrm{O} 3$	112.53 (8)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	89.63 (5)	$\mathrm{O} 4^{\text {iv }}-\mathrm{B}-\mathrm{O} 3^{\text {iv }}$	112.53 (8)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	108.74 (6)	$\mathrm{O} 4-\mathrm{B}-\mathrm{O} 3^{\text {iv }}$	108.09 (7)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {iii }}$	89.35 (3)	$\mathrm{O} 3-\mathrm{B}-\mathrm{O}^{\text {iv }}$	106.9 (2)
O5-P2-O2	112.09 (8)	$\mathrm{O} 2-\mathrm{Li}-\mathrm{O}^{\text {v }}$	180.0
O5-P2-O1	107.21 (8)	$\mathrm{O} 2-\mathrm{Li}-\mathrm{O} 1^{\mathrm{ii}}$	80.86 (5)
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 1$	113.33 (8)	$\mathrm{O} 2^{\mathrm{v}}-\mathrm{Li}-\mathrm{O} 1^{\text {ii }}$	99.14 (5)
O5-P2-O3	109.13 (8)	$\mathrm{O} 2-\mathrm{Li}-\mathrm{O} 1^{\mathrm{ix}}$	99.14 (5)
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 3$	109.99 (8)	$\mathrm{O} 2^{\mathrm{v}}-\mathrm{Li}-\mathrm{O} 1^{\text {ix }}$	80.86 (5)
$\mathrm{O} 1-\mathrm{P} 2-\mathrm{O} 3$	104.75 (7)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Li}-\mathrm{O} 1^{\text {ix }}$	180.0
$\mathrm{B}-\mathrm{O} 3-\mathrm{P} 2$	124.48 (13)	$\mathrm{O} 2-\mathrm{Li}-\mathrm{O} 5^{\mathrm{ii}}$	91.82 (5)
$\mathrm{P} 2-\mathrm{O} 2-\mathrm{Cu} 1$	122.61 (8)	$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Li}-\mathrm{O} 5^{\text {ii }}$	88.18 (5)
$\mathrm{P} 2-\mathrm{O} 2-\mathrm{Li}$	129.39 (8)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Li}-\mathrm{O} 5^{\text {ii }}$	68.18 (5)
$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{Li}$	96.37 (6)	$\mathrm{O} 1^{\text {ix }}-\mathrm{Li}-\mathrm{O} 5^{\text {ii }}$	111.82 (5)
$\mathrm{P} 2-\mathrm{O} 1-\mathrm{Cu1}{ }^{\text {vi }}$	106.24 (7)	$\mathrm{O} 2-\mathrm{Li}-\mathrm{O} 5^{\mathrm{ix}}$	88.18 (5)
$\mathrm{P} 2-\mathrm{O} 1-\mathrm{Li}^{\text {vi }}$	95.01 (6)	$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Li}-\mathrm{O} 5^{\text {ix }}$	91.82 (5)
$\mathrm{Cu1}{ }^{\text {vi }}-\mathrm{O} 1-\mathrm{Li}^{\text {vi }}$	93.45 (6)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Li}-\mathrm{O} 5^{\text {ix }}$	111.82 (5)
$\mathrm{P} 2-\mathrm{O} 1-\mathrm{Cu}^{\text {vii }}$	123.34 (8)	$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Li}-\mathrm{O} 5^{\text {ix }}$	68.18 (5)
$\mathrm{Cu}^{\mathrm{vi}}-\mathrm{O} 1-\mathrm{Cu} 1^{\mathrm{vii}}$	125.56 (6)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Li}-\mathrm{O} 5^{\text {ix }}$	180.0
$\mathrm{Li}^{\mathrm{vi}}-\mathrm{O} 1-\mathrm{Cu} 1^{\text {vii }}$	102.45 (5)		

Symmetry codes: (i) $x,-y+2, z+1 / 2$; (ii) $x, y+1, z$; (iii) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (iv) $-x+1, y,-z+3 / 2$; (v) $-x+1 / 2,-y+5 / 2,-z+1$; (vi) x, $y-1, z$; (vii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (viii) $x,-y+2, z-1 / 2$; (ix) $-x+1 / 2,-y+3 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.848(10)$	$2.37(3)$	$2.9535(19)$	$126(3)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots 5^{\mathrm{x}}$	$0.848(10)$	$2.32(2)$	$3.036(2)$	$143(3)$

Symmetry codes: (i) $x,-y+2, z+1 / 2$; (x) $x,-y+1, z+1 / 2$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

180%

