inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

An open-framework borophosphate, LiCu₂BP₂O₈(OH)₂

Juan Zheng and Aiyun Zhang*

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China Correspondence e-mail: zay@hpu.edu.cn

Received 15 April 2009; accepted 26 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (O–B) = 0.002 Å; R factor = 0.019; wR factor = 0.054; data-to-parameter ratio = 11.7.

The open-framework alkaline-earth metal borophosphate, lithium dicopper(II) borophosphate dihydroxide, LiCu₂B- $P_2O_8(OH)_2$, was synthesized hydrothermally. Its structure may be regarded as a layer formed *via* BO₄ and PO₄ tetrahedra bonding together with distorted CuO₆ and LiO₆ octahedral units. Each P atom is connected to B, Li and Cu atoms through a bridging O atom. The B atom lies on a crystallographic twofold axis and the Li atom lies on a center of symmetry. The two metal centers are connected to each other by Cu–O–Li bonds.

Related literature

For chiral structures and potential applications in catalysis of borophosphates with the general formula $AM(H_2O)_2$ -[BP₂O₈].yH₂O (A = Li, Na, K, NH₄⁺; M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (y = 0.5-1), see: Ewald *et al.* (2007); Kniep *et al.* (1997). For related structures, see: Boy & Kniep (2001); Yang *et al.* (2008).

Experimental

Crystal data LiCu₂BP₂O₈(OH)₂ $M_r = 368.79$ Monoclinic, C2/c a = 15.0974 (19) Å b = 4.7617 (6) Å

c = 9.6585 (12) Å $\beta = 91.0190 (10)^{\circ}$ $V = 694.23 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

$\mu =$	6.64 mm^{-1}
T =	296 K

Data collection

Bruker APEXII CCD	4076 measured reflections
diffractometer	925 independent reflections
Absorption correction: multi-scan	897 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.032$
$T_{\min} = 0.350, \ T_{\max} = 0.398$	
(expected range = $0.285 - 0.324$)	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.054$ S = 1.18925 reflections 79 parameters 1 restraint H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$

 $0.20 \times 0.18 \times 0.17~\mathrm{mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{O4-H4\cdots O2^{i}}$ $O4-H4\cdots O5^{ii}$	0.848 (10) 0.848 (10)	2.37 (3) 2.32 (2)	2.9535 (19) 3.036 (2)	126 (3) 143 (3)
Summatry and a (i)		(ii) x y + 1 =	. 1 1	

Symmetry codes: (i) $x, -y + 2, z + \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Main Teacher Project of Henan Province (Reference 649082) and the Foundation of Graduate Produce (Reference 2008-*M*-17).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2104).

References

Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 9-10.

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517– 1540.
- Kniep, R., Will, H. G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. 36, 1013–1014.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, T., Sun, J.-L., Li, G.-B., Eriksson, L., Zou, X.-D., Liao, F.-H. & Ling, J.-H. (2008). Chem. Eur. J. 14, 7212–7217.

supplementary materials

Acta Cryst. (2009). E65, i40 [doi:10.1107/81600536809015554]

An open-framework borophosphate, LiCu₂BP₂O₈(OH)₂

J. Zheng and A. Zhang

Comment

In the last decade, much attention has been paid to the large family of borophosphates with the general formula $AM(H_2O)_2[BP_2O_8].yH_2O$ (A=Li, Na, K, NH4⁺; *M*=Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (*y* = 0.5–1) due to their chiral structure property and potential applications for catalysts (Kniep *et al.*, 1997; Ewald *et al.*, 2007).

The crystal structure of LiCu₂BP₂O₈(OH)₂ contains one unique Li atom, two Cu atoms, one boron atom, two phosphor atoms, and eight oxygen atoms and two –OH groups in the asymmetric unit of the framework. The borophosphate units are isolated anions linked by the bonds them form to Cu, Li and H. (Fig.1) Each BO₄ tetrahedron belongs to the adjacent CuO₆ octahedra. The phosphorous atoms are allocated in regular tetrahedral environments with four types of oxygen atoms. Bond lengths and angles within the anionic partial structure are consistent with related borophosphates (Boy *et al.*, 2001; Yang *et al.* 2008),. Li⁺ is coordinated by the oxygen functions groups of PO₄ groups. Cu²⁺ is adjacent to six oxygen atoms, five from PO₄ groups and one BO₄ groups, but one of the five PO₄ links (O3) is also bonded to BO₄ (Fig.2)

Experimental

Blue block crystals were synthesized hydrothermally from a mixture of $Cu(NO_3)_2$, $Li_2B_4O_7$, water and H_3PO_4 . In a typical synthesis, 0.725 g $Cu(NO_3)_2$ were dissolved in a mixture of 5 mL water, 1.691 g $Li_2B_4O_7$ and 2 ml (85%) H_3PO_4 with constant stirring. Finally, the mixture was kept in a 30 ml Teflon–lined steel autoclave at 443 K for 6days. The autoclave was slowly cooled to room temperature. Blue block crystals of thetitle compound were obtained.

Refinement

The H atoms of the coordinated water molecule were refined with Uiso(H)=2.4Ueq(O)and distance restraints d(O-H)of 0.86 (1)Å. The highest peak in the difference map is 0.63e/Å, and 0.77Å from O2, and the minimum peak is -0.53e/Å, and 0.70Å from Cu1.

Figures

Fig. 1. The structure of $LiCu_2BP_2O_8(OH)_2$. Displacement ellipsoids are drawn at 50% the probability level.

Fig. 2. Packing diagram of $LiCu_2BP_2O_8(OH)_2$, viewed along b axis.

lithium dicopper borophosphate dihydroxide

Crystal data	
LiCu ₂ BP ₂ O ₈ (OH) ₂	$F_{000} = 712$
$M_r = 368.79$	$D_{\rm x} = 3.528 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3236 reflections
<i>a</i> = 15.0974 (19) Å	$\theta = 2.7 - 29.3^{\circ}$
b = 4.7617 (6) Å	$\mu = 6.64 \text{ mm}^{-1}$
c = 9.6585 (12) Å	T = 296 K
$\beta = 91.0190 \ (10)^{\circ}$	Block, blue
$V = 694.23 (15) \text{ Å}^3$	$0.20\times0.18\times0.17~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	925 independent reflections
Radiation source: fine-focus sealed tube	897 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 296 K	$\theta_{\text{max}} = 29.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -20 \rightarrow 20$
$T_{\min} = 0.350, \ T_{\max} = 0.398$	$k = -6 \rightarrow 6$
4076 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0258P)^2 + 1.3109P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.18	$(\Delta/\sigma)_{\text{max}} = 0.001$
925 reflections	$\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$

79 parameters

1 restraint

$$\begin{split} &\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97 (Sheldrick, 2008),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \end{split}$$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0350 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.350210 (15)	1.20604 (5)	0.77155 (2)	0.00731 (13)
P2	0.35630 (3)	0.67849 (9)	0.58833 (5)	0.00503 (14)
O3	0.44649 (9)	0.5916 (3)	0.65917 (14)	0.0085 (3)
O2	0.34451 (9)	0.9972 (3)	0.59584 (13)	0.0080 (3)
01	0.28531 (9)	0.5146 (3)	0.66790 (13)	0.0074 (3)
05	0.35401 (9)	0.5717 (3)	0.44007 (13)	0.0085 (3)
O4	0.44543 (9)	0.9550 (3)	0.83773 (13)	0.0101 (3)
В	0.5000	0.7756 (6)	0.7500	0.0069 (5)
Li	0.2500	1.2500	0.5000	0.0201 (11)
H4	0.425 (2)	0.852 (6)	0.901 (2)	0.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01075 (17)	0.00604 (17)	0.00510 (16)	0.00214 (8)	-0.00107 (9)	-0.00075 (7)
P2	0.0066 (2)	0.0042 (2)	0.0042 (2)	-0.00019 (15)	-0.00068 (16)	0.00003 (15)
O3	0.0084 (6)	0.0069 (6)	0.0100 (6)	0.0005 (5)	-0.0034 (5)	-0.0008 (5)
O2	0.0118 (6)	0.0048 (6)	0.0072 (6)	0.0011 (5)	-0.0018 (5)	-0.0006 (5)
01	0.0082 (6)	0.0068 (6)	0.0073 (6)	0.0005 (5)	0.0014 (4)	0.0022 (5)
O5	0.0130 (7)	0.0076 (6)	0.0049 (6)	0.0003 (5)	-0.0001 (5)	-0.0001 (5)
O4	0.0119 (6)	0.0116 (7)	0.0067 (6)	0.0041 (5)	0.0004 (5)	0.0000 (5)
В	0.0079 (13)	0.0056 (12)	0.0073 (13)	0.000	-0.0006 (10)	0.000
Li	0.021 (3)	0.017 (2)	0.022 (3)	0.006 (2)	-0.012 (2)	-0.006 (2)
Geometric paran	neters (Å, °)					

Cu1— $O5^{i}$ 1.9415 (13) P2—O1 1.5420 (14)

supplementary materials

Cu1—O2	1.9674 (14)	P2—O3	1.5686 (14)
Cu1—O4	1.9676 (14)	B—O4 ^{iv}	1.467 (2)
Cu1—O1 ⁱⁱ	2.0213 (13)	B—O3 ^{iv}	1.471 (2)
Cu1—O1 ⁱⁱⁱ	2.3242 (13)	Li—O2 ^v	2.0723 (14)
P2—O5	1.5195 (13)	Li—O1 ⁱⁱ	2.1143 (13)
Р2—О2	1.5300 (15)	Li—O5 ⁱⁱ	2.2758 (14)
O5 ⁱ —Cu1—O2	177.21 (6)	P2—O5—Cu1 ^{viii}	127.40 (8)
O5 ⁱ —Cu1—O4	92.77 (6)	P2—O5—Li ^{vi}	89.42 (6)
O2—Cu1—O4	89.64 (6)	Cu1 ^{viii} —O5—Li ^{vi}	124.75 (6)
O5 ⁱ —Cu1—O1 ⁱⁱ	91.48 (6)	B—O4—Cu1	125.51 (9)
O2—Cu1—O1 ⁱⁱ	85.80 (6)	O4 ^{iv} —B—O4	108.8 (2)
O4—Cu1—O1 ⁱⁱ	161.34 (6)	O4 ^{iv} —B—O3	108.09 (7)
O5 ⁱ —Cu1—O1 ⁱⁱⁱ	90.91 (5)	O4—B—O3	112.53 (8)
O2—Cu1—O1 ⁱⁱⁱ	89.63 (5)	O4 ^{iv} —B—O3 ^{iv}	112.53 (8)
O4—Cu1—O1 ⁱⁱⁱ	108.74 (6)	O4—B—O3 ^{iv}	108.09 (7)
O1 ⁱⁱ —Cu1—O1 ⁱⁱⁱ	89.35 (3)	O3—B—O3 ^{iv}	106.9 (2)
O5—P2—O2	112.09 (8)	O2—Li—O2 ^v	180.0
O5—P2—O1	107.21 (8)	O2—Li—O1 ⁱⁱ	80.86 (5)
O2—P2—O1	113.33 (8)	O2 ^v —Li—O1 ⁱⁱ	99.14 (5)
O5—P2—O3	109.13 (8)	O2—Li—O1 ^{ix}	99.14 (5)
O2—P2—O3	109.99 (8)	O2 ^v —Li—O1 ^{ix}	80.86 (5)
O1—P2—O3	104.75 (7)	O1 ⁱⁱ —Li—O1 ^{ix}	180.0
B—O3—P2	124.48 (13)	O2—Li—O5 ⁱⁱ	91.82 (5)
P2—O2—Cu1	122.61 (8)	O2 ^v —Li—O5 ⁱⁱ	88.18 (5)
P2—O2—Li	129.39 (8)	O1 ⁱⁱ —Li—O5 ⁱⁱ	68.18 (5)
Cu1—O2—Li	96.37 (6)	O1 ^{ix} —Li—O5 ⁱⁱ	111.82 (5)
P2—O1—Cu1 ^{vi}	106.24 (7)	O2—Li—O5 ^{ix}	88.18 (5)
P2—O1—Li ^{vi}	95.01 (6)	O2 ^v —Li—O5 ^{ix}	91.82 (5)
Cu1 ^{vi} —O1—Li ^{vi}	93.45 (6)	O1 ⁱⁱ —Li—O5 ^{ix}	111.82 (5)
P2—O1—Cu1 ^{vii}	123.34 (8)	O1 ^{ix} —Li—O5 ^{ix}	68.18 (5)
Cu1 ^{vi} —O1—Cu1 ^{vii}	125.56 (6)	O5 ⁱⁱ —Li—O5 ^{ix}	180.0
Li ^{vi} —O1—Cu1 ^{vii}	102.45 (5)		

Symmetry codes: (i) *x*, -*y*+2, *z*+1/2; (ii) *x*, *y*+1, *z*; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) -*x*+1, *y*, -*z*+3/2; (v) -*x*+1/2, -*y*+5/2, -*z*+1; (vi) *x*, *y*-1, *z*; (vii) -*x*+1/2, *y*-1/2, -*z*+3/2; (viii) *x*, -*y*+2, *z*-1/2; (ix) -*x*+1/2, -*y*+3/2, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$	
O4—H4···O2 ⁱ	0.848 (10)	2.37 (3)	2.9535 (19)	126 (3)	
O4—H4···O5 ^x	0.848 (10)	2.32 (2)	3.036 (2)	143 (3)	
Symmetry codes: (i) $x, -y+2, z+1/2$; (x) $x, -y+1, z+1/2$.					

